Spin-orbital coupling and slow phonon effects enabled persistent photoluminescence in organic crystal under isomer doping

Yixuan Dou, Catherine Demangeat, Miaosheng Wang, Hengxing Xu, Bogdan Dryzhakov, Eunkyoung Kim, Tangui Le Bahers, Kwang Sup Lee, André Jean Attias, Bin Hu

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

Original languageEnglish
Article number3485
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Spin-orbital coupling and slow phonon effects enabled persistent photoluminescence in organic crystal under isomer doping'. Together they form a unique fingerprint.

Cite this