Abstract
Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena. The recent emergence of layered materials provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons. Here we report new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe 2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons by both circularly and linearly polarized excitation, with the trion spectrum splitting into a doublet at large vertical electrical field. These observations can be explained as a locking of spin and layer pseudospin in a given valley, where the doublet implies an electrically induced spin splitting. The observed distinctive behaviour of the trion doublet under polarized excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step towards optical manipulation in van der Waals heterostructures through interlayer excitons.
Original language | English |
---|---|
Pages (from-to) | 130-134 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 10 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2014 |