Spectral variability of a sample of extreme variability quasars and implications for the Mg II broad-line region

Qian Yang, Yue Shen, Yu Ching Chen, Xin Liu, James Annis, Santiago Avila, Emmanuel Bertin, David Brooks, Elizabeth Buckley-Geer, Aurelio Carnero Rosell, Matias Carrasco Kind, Jorge Carretero, Luiz da Costa, Shantanu Desai, H. Thomas Diehl, Peter Doel, Josh Frieman, Juan Garcia-Bellido, Enrique Gaztanaga, David GerdesDaniel Gruen, Robert Gruendl, Julia Gschwend, Gaston Gutierrez, Devon L. Hollowood, Klaus Honscheid, Ben Hoyle, David James, Elisabeth Krause, Kyler Kuehn, Christopher Lidman, Marcos Lima, Marcio Maia, Jennifer Marshall, Paul Martini, Felipe Menanteau, Ramon Miquel, Andrés Plazas Malagón, Eusebio Sanchez, Vic Scarpine, Rafe Schindler, Michael Schubnell, Santiago Serrano, Ignacio Sevilla, Mathew Smith, Marcelle Soares-Santos, Flavia Sobreira, Eric Suchyta, Molly Swanson, Gregory Tarle, Vinu Vikram, Alistair Walker

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the g band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey epochs (separated by a few years in the quasar rest frame). These EVQs are selected from quasars in the SDSS Stripe 82 region, covering a redshift range of 0.5 < z < 2.1. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the g band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1–2 mag on time-scales of only months. To increase sample statistics, we use a supplemental sample of 33 EVQs with multi-epoch spectra from SDSS that cover the broad Mg II λ2798 line. Leveraging on the large dynamic range in continuum variability between the multi-epoch spectra, we explore the associated variations in the broad Mg II line, whose variability properties have not been well studied before. The broad Mg II flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg II is reverberating to continuum changes. However, the full width at half-maximum (FWHM) of Mg II does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg II to estimate the black hole mass with single epoch spectra therefore introduces a luminosity-dependent bias.

Original languageEnglish
Pages (from-to)5773-5787
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Volume493
Issue number4
DOIs
StatePublished - Apr 1 2021

Funding

The PS1 has been made possible through contributions by the \u2018Institute for Astronomy\u2019, the University of Hawaii, the \u2018Pan-STARRS Project Office\u2019, the \u2018Max-Planck Society\u2019 and its participating institutes, the \u2018Max Planck Institute for Astronomy, Heidelberg\u2019, and the \u2018Max Planck Institute for Extraterrestrial Physics, Garching\u2019, \u2018The Johns Hopkins University\u2019, Durham University, the University of Edinburgh, \u2018Queen\u2019s University Belfast\u2019, the Harvard-Smithsonian Center for Astrophysics, the \u2018Las Cumbres Observatory Global Telescope Network Incorporated\u2019, \u2018the National Central University of Taiwan\u2019, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac\u00B8\u00E3o Carlos Chagas Filho de Amparo \u00E0 Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico and the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Inovac\u00B8\u00E3o, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. 2IRAF is the Image Reduction and Analysis Facility, written and supported by the National Optical Astronomy Observatories (NOAO) operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ci\u00EAnciae Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. We thank the referee, Andy Lawrence, for useful comments that improved the manuscript. QY and YS acknowledge support from an Alfred P. Sloan Research Fellowship (YS) and NSF grant AST-1715579. We thank Patrick Hall, Tamara Davis, Shu Wang, and Hengxiao Guo for useful discussions and suggestions.

Keywords

  • Black hole physics
  • Galaxies: active
  • Line: profiles
  • Quasars: general

Fingerprint

Dive into the research topics of 'Spectral variability of a sample of extreme variability quasars and implications for the Mg II broad-line region'. Together they form a unique fingerprint.

Cite this