Sparse Binary Matrix-Vector Multiplication on Neuromorphic Computers

Catherine D. Schuman, Bill Kay, Prasanna Date, Ramakrishnan Kannan, Piyush Sao, Thomas E. Potok

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Neuromorphic computers offer the opportunity for low-power, efficient computation. Though they have been primarily applied to neural network tasks, there is also the opportunity to leverage the inherent characteristics of neuromorphic computers (low power, massive parallelism, collocated processing and memory) to perform non-neural network tasks. Here, we demonstrate how an approach for performing sparse binary matrix-vector multiplication on neuromorphic computers. We describe the approach, which relies on the connection between binary matrix-vector multiplication and breadth first search, and we introduce the algorithm for performing this calculation in a neuromorphic way. We validate the approach in simulation. Finally, we provide a discussion of the runtime of this algorithm and discuss where neuromorphic computers in the future may have a computational advantage when performing this computation.

Original languageEnglish
Title of host publication2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages308-311
Number of pages4
ISBN (Electronic)9781665435772
DOIs
StatePublished - Jun 2021
Event2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - Virtual, Portland, United States
Duration: May 17 2021 → …

Publication series

Name2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021

Conference

Conference2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021
Country/TerritoryUnited States
CityVirtual, Portland
Period05/17/21 → …

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Robinson Pino, program manager, under contract number DE-AC05-00OR22725.

Keywords

  • graph algorithms
  • matrix-vector multiplication
  • neuromorphic computing
  • spiking neural networks

Fingerprint

Dive into the research topics of 'Sparse Binary Matrix-Vector Multiplication on Neuromorphic Computers'. Together they form a unique fingerprint.

Cite this