Abstract
A European project was undertaken to improve the available SOL ICRF physics simulation tools and confront them with measurements. This paper first reviews code upgrades within the project. Using the multi-physics finite element solver COMSOL, the SSWICH code couples RF full-wave propagation with DC plasma biasing over "antenna-scale" 2D (toroidal/radial) domains, via non-linear RF and DC sheath boundary conditions (SBCs) applied at shaped plasma-facing boundaries. For the different modules and associated SBCs, more elaborate basic research in RF-sheath physics, SOL turbulent transport and applied mathematics, generally over smaller spatial scales, guides code improvement. The available simulation tools were applied to interpret experimental observations on various tokamaks. We focus on robust qualitative results common to several devices: the spatial distribution of RF-induced DC bias; left-right asymmetries over strap power unbalance; parametric dependence and antenna electrical tuning; DC SOL biasing far from the antennas, and RF-induced density modifications. From these results we try to identify the relevant physical ingredients necessary to reproduce the measurements, e.g. accurate radiated field maps from 3D antenna codes, spatial proximity effects from wave evanescence in the near RF field, or DC current transport. Pending issues towards quantitative predictions are also outlined.
Original language | English |
---|---|
Article number | 01001 |
Journal | EPJ Web of Conferences |
Volume | 157 |
DOIs | |
State | Published - Oct 23 2017 |
Externally published | Yes |
Event | 22nd Topical Conference on Radio-Frequency Power in Plasmas 2017 - Aix en Provence, France Duration: May 30 2017 → Jun 2 2017 |
Funding
wts.ognnAcledkm This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European research and training programme under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Funders | Funder number |
---|---|
European research and training programme | |
Horizon 2020 Framework Programme | 633053 |