Abstract
The thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions have been measured in the 15-55 °C temperature range for a fundamental understanding of the elementary steps involved in this sulfate separation method. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by β liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. This corresponds to 77-91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 °C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 °C, 63% and 75% of sulfate was removed from solution within 8 and 24 h, respectively. These results indicate the capsule crystallization method is a viable approach to sulfate separation from nuclear wastes.
Original language | English |
---|---|
Pages (from-to) | 517-522 |
Number of pages | 6 |
Journal | Crystal Growth and Design |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Jan 7 2015 |