TY - GEN
T1 - SNS proton power upgrade requirements for magnet and kicker systems
AU - Saethre, R. B.
AU - Plum, M. A.
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/2
Y1 - 2017/7/2
N2 - The Spallation Neutron Source (SNS) Proton Power Upgrade (PPU) will double the beam power from 1.4 to 2.8 MW by adding cavities in the superconducting linear accelerator (SCL) which will increase the beam energy from 0.97 to 1.3 GeV and by increasing the average linac beam current from 26 to 38 mA. Provisions for an accelerator power increase were made in the original SNS project, and these are being leveraged to provide a cost-effective means of doubling the beam power. The magnet systems were originally designed for the higher beam energies except for a few in the injection and extraction regions of the accumulator ring. Three injection region magnets will be redesigned. The eight injection-bump kicker power supplies will be upgraded to permit higher current operation and two additional extraction kicker power supplies and magnets will be added. This paper will review the requirements and options for the magnets and power supplies for the injection and extraction regions.
AB - The Spallation Neutron Source (SNS) Proton Power Upgrade (PPU) will double the beam power from 1.4 to 2.8 MW by adding cavities in the superconducting linear accelerator (SCL) which will increase the beam energy from 0.97 to 1.3 GeV and by increasing the average linac beam current from 26 to 38 mA. Provisions for an accelerator power increase were made in the original SNS project, and these are being leveraged to provide a cost-effective means of doubling the beam power. The magnet systems were originally designed for the higher beam energies except for a few in the injection and extraction regions of the accumulator ring. Three injection region magnets will be redesigned. The eight injection-bump kicker power supplies will be upgraded to permit higher current operation and two additional extraction kicker power supplies and magnets will be added. This paper will review the requirements and options for the magnets and power supplies for the injection and extraction regions.
UR - http://www.scopus.com/inward/record.url?scp=85054265731&partnerID=8YFLogxK
U2 - 10.1109/PPC.2017.8291208
DO - 10.1109/PPC.2017.8291208
M3 - Conference contribution
AN - SCOPUS:85054265731
SN - 9781509057481
T3 - IEEE International Pulsed Power Conference
BT - 2017 IEEE 21st International Conference on Pulsed Power, PPC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 21st IEEE International Conference on Pulsed Power, PPC 2017
Y2 - 18 June 2017 through 22 June 2017
ER -