SNS proton power upgrade requirements for magnet and kicker systems

R. B. Saethre, M. A. Plum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The Spallation Neutron Source (SNS) Proton Power Upgrade (PPU) will double the beam power from 1.4 to 2.8 MW by adding cavities in the superconducting linear accelerator (SCL) which will increase the beam energy from 0.97 to 1.3 GeV and by increasing the average linac beam current from 26 to 38 mA. Provisions for an accelerator power increase were made in the original SNS project, and these are being leveraged to provide a cost-effective means of doubling the beam power. The magnet systems were originally designed for the higher beam energies except for a few in the injection and extraction regions of the accumulator ring. Three injection region magnets will be redesigned. The eight injection-bump kicker power supplies will be upgraded to permit higher current operation and two additional extraction kicker power supplies and magnets will be added. This paper will review the requirements and options for the magnets and power supplies for the injection and extraction regions.

Original languageEnglish
Title of host publication2017 IEEE 21st International Conference on Pulsed Power, PPC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781509057481
DOIs
StatePublished - Jul 2 2017
Event21st IEEE International Conference on Pulsed Power, PPC 2017 - Brighton, United Kingdom
Duration: Jun 18 2017Jun 22 2017

Publication series

NameIEEE International Pulsed Power Conference
Volume2017-June
ISSN (Print)2158-4915
ISSN (Electronic)2158-4923

Conference

Conference21st IEEE International Conference on Pulsed Power, PPC 2017
Country/TerritoryUnited Kingdom
CityBrighton
Period06/18/1706/22/17

Funding

While the magnet power supplies can supply the required currents, there are ten supplies that will have low (<20%) margin. Fig. 2 is a chart of the magnets that will exceed 80% of their current (blue) or voltage (red) rating when operating at the projected PPU level. The ten magnet power supplies identified will be analyzed to determine which ?This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). ?email: [email protected] components are at risk of failure due to the reduced design margin.

FundersFunder number
U.S. Department of Energy

    Fingerprint

    Dive into the research topics of 'SNS proton power upgrade requirements for magnet and kicker systems'. Together they form a unique fingerprint.

    Cite this