Abstract
Intrinsic mechanical properties of sub-100 nm thin films are markedly difficult to obtain, yet an ever-growing necessity for emerging fields such as soft organic electronics. To complicate matters, the interfacial contribution plays a major role in such thin films and is often unexplored despite supporting substrates being a main component in current metrologies. Here we present the shear motion assisted robust transfer technique for fabricating free-standing sub-100 nm films and measuring their inherent structural–mechanical properties. We compare these results to water-supported measurements, exploring two phenomena: 1) The influence of confinement on mechanics and 2) the role of water on the mechanical properties of hydrophobic films. Upon confinement, polystyrene films exhibit increased strain at failure, and reduced yield stress, while modulus is reduced only for the thinnest 19 nm film. Water measurements demonstrate subtle differences in mechanics which we elucidate using quartz crystal microbalance and neutron reflectometry.
Original language | English |
---|---|
Article number | 2347 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2021 |
Funding
We thank the financial support from U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under award number of DE-SC0019361. L.A.G. acknowledges support from the NSF NRT program “Interface” award #DGE-1449999) through the University of Southern Mississippi. Part of this research utilized quartz crystal microbalance, which was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. A portion of this research utilized beamline BL-4B (LIQREF) at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. S.R.-G. thanks the National Science and Engineering Research Council of Canada (NSERC) for financial support through a Discovery Grant (RGPIN-2017-06611).
Funders | Funder number |
---|---|
National Science Foundation | -1449999 |
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | DE-SC0019361 |
University of Southern Mississippi | |
Natural Sciences and Engineering Research Council of Canada | RGPIN-2017-06611 |