Abstract
The investigation of plant roots is inherently difficult and often neglected. Being out of sight, roots are often out of mind. Nevertheless, roots play a key role in the exchange of mass and energy between soil and the atmosphere, in addition to the many practical applications in agriculture. In this paper, we propose a method for roots imaging based on the joint use of two electrical noninvasive methods: electrical resistivity tomography (ERT) and mise-à-la-masse (MALM). The approach is based on the key assumption that the plant root system acts as an electrically conductive body, so that injecting electrical current into the plant stem will ultimately result in the injection of current into the subsoil through the root system, and particularly through the root terminations via hair roots. Evidence from field data, showing that voltage distribution is very different whether current is injected into the tree stem or in the ground, strongly supports this hypothesis. The proposed procedure involves a stepwise inversion of both ERT and MALM data that ultimately leads to the identification of electrical resistivity (ER) distribution and of the current injection root distribution in the three-dimensional soil space. This, in turn, is a proxy to the active (hair) root density in the ground. We tested the proposed procedure on synthetic data and, more importantly, on field data collected in a vineyard, where the estimated depth of the root zone proved to be in agreement with literature on similar crops. The proposed noninvasive approach is a step forward towards a better quantification of root structure and functioning.
Original language | English |
---|---|
Pages (from-to) | 5427-5444 |
Number of pages | 18 |
Journal | Hydrology and Earth System Sciences |
Volume | 22 |
Issue number | 10 |
DOIs | |
State | Published - Oct 23 2018 |
Externally published | Yes |
Funding
Acknowledgements. The authors wish to acknowledge support from the projects “Water Saving in Agriculture: technological developments for the sustainable management of limited water resources in the Mediterranean area” (ERANET-MED WASA) and “Hydro-geophysical monitoring and modeling for the Earth’s Critical Zone” (CPDA147114) funded by the University of Padua. In addition, the information, data or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under work authorization number 16/CJ000/04/08. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Luca Peruzzo and Myriam Schmutz gratefully acknowledge the financial support from IDEX (Initiative D’EXellence, France), the European regional development fund Interreg Sudoe – Soil Take Care, no. SOE1/P4/F0023 – Sol Precaire.
Funders | Funder number |
---|---|
European regional development fund Interreg Sudoe – Soil Take Care | SOE1/P4/F0023 |
IDEX | |
U.S. Department of Energy | |
Water Saving in Agriculture | CPDA147114 |
U.S. Department of Energy | 16/CJ000/04/08 |
Advanced Research Projects Agency - Energy | |
Università degli Studi di Padova |