TY - JOUR
T1 - Slow dynamics of water molecules in an aqueous solution of lithium chloride probed by neutron spin-echo
AU - Mamontov, E.
AU - Ohl, M.
PY - 2013/7/14
Y1 - 2013/7/14
N2 - Aqueous solutions of lithium chloride are uniquely similar to pure water in the parameters such as glass transition temperature, Tg, yet they could be supercooled without freezing down to below 200 K even in the bulk state. This provides advantageous opportunity to study low-temperature dynamics of water molecules in water-like environment in the bulk rather than nano-confined state. Using high-resolution neutron spin-echo data, we argue that the critical temperature, Tc, which is also common between lithium chloride aqueous solutions and pure water, is associated with the split of a secondary relaxation from the main structural relaxation on cooling down. Our results do not allow distinguishing between a well-defined separate secondary relaxation process and the "excess wing" scenario, in which the temperature dependence of the secondary relaxation follows the main relaxation. Importantly, however, in either of these scenarios the secondary relaxation is associated with density-density fluctuations, measurable in a neutron scattering experiment. Neutron scattering could be the only experimental technique with the capability of providing information on the spatial characteristics of the secondary relaxation through the dependence of the signal on the scattering momentum transfer. We propose a simple method for such analysis.
AB - Aqueous solutions of lithium chloride are uniquely similar to pure water in the parameters such as glass transition temperature, Tg, yet they could be supercooled without freezing down to below 200 K even in the bulk state. This provides advantageous opportunity to study low-temperature dynamics of water molecules in water-like environment in the bulk rather than nano-confined state. Using high-resolution neutron spin-echo data, we argue that the critical temperature, Tc, which is also common between lithium chloride aqueous solutions and pure water, is associated with the split of a secondary relaxation from the main structural relaxation on cooling down. Our results do not allow distinguishing between a well-defined separate secondary relaxation process and the "excess wing" scenario, in which the temperature dependence of the secondary relaxation follows the main relaxation. Importantly, however, in either of these scenarios the secondary relaxation is associated with density-density fluctuations, measurable in a neutron scattering experiment. Neutron scattering could be the only experimental technique with the capability of providing information on the spatial characteristics of the secondary relaxation through the dependence of the signal on the scattering momentum transfer. We propose a simple method for such analysis.
UR - http://www.scopus.com/inward/record.url?scp=84881091170&partnerID=8YFLogxK
U2 - 10.1039/c3cp51355f
DO - 10.1039/c3cp51355f
M3 - Article
AN - SCOPUS:84881091170
SN - 1463-9076
VL - 15
SP - 10732
EP - 10739
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 26
ER -