Simulations of KSTAR high performance steady state operation scenarios

Yong Su Na, C. E. Kessel, J. M. Park, Sumin Yi, A. Becoulet, A. C.C. Sips, J. Y. Kim

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; βN above 3, H98(y, 2) up to 2.0, f BS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally, ideal MHD stability is investigated for the ITER-relevant advanced scenarios in KSTAR. The methods and results presented in this paper are expected to contribute to improving the ITER and beyond ITER predictive simulations.

Original languageEnglish
Article number115018
JournalNuclear Fusion
Volume49
Issue number11
DOIs
StatePublished - 2009

Fingerprint

Dive into the research topics of 'Simulations of KSTAR high performance steady state operation scenarios'. Together they form a unique fingerprint.

Cite this