Abstract
We use an E × B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes (RBSP)) during 15-20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15-19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is 36 min. The mean model-data difference in radial location is 0.40 ± 0.05 RE. The model-data agreement is better for strong convection than for quiet or weakly disturbed conditions. On 18 January, both RBSP spacecraft crossed a tenuous, detached plasma feature at approximately the same time and nightside location as a wrapped residual plume, predicted by the model to have formed 32 h earlier on 17 January. The agreement between simulation and data indicates that the model-provided global information is adequate to correctly interpret the RBSP density observations. Key Points Model nightside plasmapause encounters agree with observations to within 0.4
| Original language | English |
|---|---|
| Pages (from-to) | 7464-7484 |
| Number of pages | 21 |
| Journal | Journal of Geophysical Research: Space Physics |
| Volume | 119 |
| Issue number | 9 |
| DOIs | |
| State | Published - Sep 2014 |
Keywords
- observations
- plasmasphere
- residual plume
- simulation
- Van Allen Probes