Abstract
This manuscript presents a benchmark problem for the simulation of single-phase flow, reactive transport, and solid geometry evolution at the pore scale. The problem is organized in three parts that focus on specific aspects: flow and reactive transport (part I), dissolution-driven geometry evolution in two dimensions (part II), and an experimental validation of three-dimensional dissolution-driven geometry evolution (part III). Five codes are used to obtain the solution to this benchmark problem, including Chombo-Crunch, OpenFOAM-DBS, a lattice Boltzman code, Vortex, and dissolFoam. These codes cover a good portion of the wide range of approaches typically employed for solving pore-scale problems in the literature, including discretization methods, characterization of the fluid-solid interfaces, and methods to move these interfaces as a result of fluid-solid reactions. A short review of these approaches is given in relation to selected published studies. Results from the simulations performed by the five codes show remarkable agreement both quantitatively—based on upscaled parameters such as surface area, solid volume, and effective reaction rate—and qualitatively—based on comparisons of shape evolution. This outcome is especially notable given the disparity of approaches used by the codes. Therefore, these results establish a strong benchmark for the validation and testing of pore-scale codes developed for the simulation of flow and reactive transport with evolving geometries. They also underscore the significant advances seen in the last decade in tools and approaches for simulating this type of problem.
Original language | English |
---|---|
Pages (from-to) | 1285-1318 |
Number of pages | 34 |
Journal | Computational Geosciences |
Volume | 25 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2021 |
Funding
This material is based upon work supported as part of the Center for Nanoscale Control of Geologic CO, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-AC02-05CH11231. Chombo-Crunch simulations used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract DE-AC02-05CH11231. Development of dissolFoam was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Award Number DE-FG02-98ER14853 and DE-SC0018676. Development of the advanced mesh relaxation in dissolFoam was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Vortex method simulations acknowledge the HPC resources of cluster Pyrene (UPPA-E2S, Pau, France) and the support of the Carnot Institute ISIFoR under contract RugoRX. N.I.P. acknowledges support from Swiss National Science Foundation, SNSF project No: 200021_172618, and the Swiss National Supercomputing Centre (CSCS). The benchmark problem set was proposed and developed by S.M. and C.S. Manuscript preparation was led by S.M. Chombo-Crunch simulations were conducted by S.M., OpenFOAM-DBS by C.S., lattice Boltzmann by A.A. and N.I.P., vortex by P.P., and dissolFoam by A.L. and V.S. These authors are listed according to when they joined the benchmark effort. Chombo-Crunch was developed by D.T. and S.M., CrunchFlow by C.I.S., OpenFOAM-DBS by C.S., the lattice Boltzmann code by N.I.P., the vortex code by P.P., and dissolFoam by A.L. and V.S. Part III experiments were conducted by S.R. 2
Funders | Funder number |
---|---|
Carnot Institute ISIFoR | |
Swiss National Supercomputing Centre | |
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | DE-AC02-05CH11231 |
Oak Ridge National Laboratory | |
Chemical Sciences, Geosciences, and Biosciences Division | DE-FG02-98ER14853, DE-SC0018676 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | 200021_172618 |
Keywords
- Benchmark
- Moving boundary
- Pore scale
- Reactive transport
- Review of approaches