Abstract
We evaluate the simulated teleconnection of El Niño–Southern Oscillation (ENSO) to winter season precipitation extremes over the United States in a long (98 years) 1950 control high-resolution version (HR; 25-km nominal atmosphere model horizontal resolution) of the U.S. Department of Energy’s (DOE) Energy Exascale Earth System Model version 1 (E3SMv1). The model bias and spatial pattern of ENSO teleconnections to mean and extreme precipitation in HR overall are similar to the low-resolution model’s (LR; 110 km) historical simulation (four-member ensemble, 1925–59). However, over the southeastern United States (SE-U.S.), HR produces stronger El Niño–associated extremes, reducing LR’s model bias. Both LR and HR produce weaker than observed increase in storm track activity during El Niño events there, but HR improves the ENSO-associated variability of moisture transport over SE-U.S. During El Niño, stronger vertical velocities in HR produce stronger large-scale precipitation, causing larger latent heating of the troposphere that pulls in more moisture from the Gulf of Mexico into the SE-U.S. This positive feedback also contributes to the stronger mean and extreme precipitation response in HR. Over the Pacific Northwest, LR’s bias of stronger than observed La Niña associated extremes is amplified in HR. Both models simulate stronger than observed moisture transport from the Pacific Ocean into the region during La Niña years. The amplified HR bias there is due to stronger orographically driven vertical updrafts that create stronger large-scale precipitation, despite weaker La Niña–induced storm track activity. SIGNIFICANCE STATEMENT: New high-resolution Earth system models (ESMs) solve mathematical equations of fluid flow at much smaller spatial scales than prevalent ESMs, and thus are prohibitively expensive to compute. However, they can be useful for simulating accurate details of regional climate extremes that are driven by naturally occurring climate oscillations like El Niño–Southern Oscillation (ENSO). Here, we evaluate the simulation of ENSO-driven precipitation extremes over the United States in the high-resolution version of the U.S. Department of Energy’s new Energy Exascale Earth System Model version 1. We find that the high-resolution model improves upon its low-resolution counterpart over the southeastern United States by producing a better transport of moisture into the region from the Gulf of Mexico during El Niño. Over the U.S. Pacific Northwest, the high-resolution model simulates the atmospheric flow in more detail over the complex mountainous terrain. However, it also brings in more moisture from the Pacific Ocean just like the low-resolution model. This causes it to produce precipitation extremes during La Niña years there that are stronger than that observed in the real world.
Original language | English |
---|---|
Pages (from-to) | 3371-3393 |
Number of pages | 23 |
Journal | Journal of Climate |
Volume | 35 |
Issue number | 11 |
DOIs | |
State | Published - Jun 1 2022 |
Funding
Acknowledgments. This research was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This manuscript has been authored by UT-Battelle, LLC, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. DOE under Contract DE-AC52-07NA27344. This research used the resources of the Oak Ridge and Argonne Leadership Computing Facilities at the Oak Ridge and Argonne National Laboratories, respectively, and the National Energy Research Scientific Computing Center, which are supported by the Office of Science of the U.S. Department of Energy under Contracts DE-AC05-00OR22725, DE-AC02-06CH11357, and DE-AC02-05CH11231 respectively.
Funders | Funder number |
---|---|
Oak Ridge and Argonne National Laboratories | |
U.S. Department of Energy | DE-AC52-07NA27344 |
Office of Science | |
Biological and Environmental Research | DE-AC05-00OR22725 |
National Energy Research Scientific Computing Center | DE-AC02-05CH11231, DE-AC02-06CH11357 |
Keywords
- Climate models
- ENSO
- Extratropical cyclones
- Extreme events
- Hydrologic cycle
- Teleconnections