TY - JOUR
T1 - Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles
AU - Gao, Zhiming
AU - Daw, C. Stuart
AU - Chakravarthy, V. Kalyana
PY - 2012
Y1 - 2012
N2 - We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel-powered hybrid and plug-in hybrid vehicles (HEVs and PHEVs). The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of commercially available Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate that the DOC-SCR combination can reduce CO, HC and NOx emissions without creating a significant direct fuel penalty, but there is also an increase in the possibility of ammonia slip. Also, the addition of an upstream DOC increases aftertreatment thermal inertia, delaying light-off of the SCR catalyst. We find that the emissions reduction efficiency of the DOC-SCR combination is better for our simulated HEV compared to our simulated PHEV.
AB - We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel-powered hybrid and plug-in hybrid vehicles (HEVs and PHEVs). The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of commercially available Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate that the DOC-SCR combination can reduce CO, HC and NOx emissions without creating a significant direct fuel penalty, but there is also an increase in the possibility of ammonia slip. Also, the addition of an upstream DOC increases aftertreatment thermal inertia, delaying light-off of the SCR catalyst. We find that the emissions reduction efficiency of the DOC-SCR combination is better for our simulated HEV compared to our simulated PHEV.
UR - http://www.scopus.com/inward/record.url?scp=85072489480&partnerID=8YFLogxK
U2 - 10.4271/2012-01-1304
DO - 10.4271/2012-01-1304
M3 - Conference article
AN - SCOPUS:85072489480
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - SAE 2012 World Congress and Exhibition
Y2 - 24 April 2012 through 26 April 2012
ER -