Simulation-based approach for the optimization of a biofuel supply chain

Hernán Chávez, Krystel K. Castillo-Villar, Erin Webb

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The billion-ton study lead by the Oak Ridge National Laboratory indicates that the U.S. can sustainably produce over a billion ton of biomass, annually. However, the delivery of the biomass required to meet the required goals is particularly challenging. This is mainly because of the physical properties of biomass. This paper focuses on the use of agricultural residues to produce second-generation biofuels. Second generation biomass exhibits more quality variability (e.g., higher ash and moisture contents) than first generation. The purpose of this study is to quantify the cost of imperfect feedstock quality in a biomass-to-biorefinery supply chain (SC) and to develop a discrete event simulation coupled with an optimization algorithm for designing a biofuel SC. This paper presents a novel optimization approach based on an extended Integrated Biomass Supply and Logistics (IBSAL) simulation model for estimating the collection, storage, and transportation costs. The presented extension of the IBSAL considers the cost incurred for having imperfect feedstock quality and finds the optimal SC design. The applicability of this methodology is illustrated by using a case study in Ontario, Canada. A converging set of non-dominated solutions is obtained from computational experiments. Sensitivity analysis is performed to evaluate the impact of different scenarios on overall costs. Preliminary results are presented.

Original languageEnglish
Title of host publication67th Annual Conference and Expo of the Institute of Industrial Engineers 2017
EditorsHarriet B. Nembhard, Katie Coperich, Elizabeth Cudney
PublisherInstitute of Industrial Engineers
Pages271-276
Number of pages6
ISBN (Electronic)9780983762461
StatePublished - 2017
Event67th Annual Conference and Expo of the Institute of Industrial Engineers 2017 - Pittsburgh, United States
Duration: May 20 2017May 23 2017

Publication series

Name67th Annual Conference and Expo of the Institute of Industrial Engineers 2017

Conference

Conference67th Annual Conference and Expo of the Institute of Industrial Engineers 2017
Country/TerritoryUnited States
CityPittsburgh
Period05/20/1705/23/17

Funding

Funding for this research was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (4000142556) and U.S. Department of Agriculture/National Institute of Food and Agriculture (2015-38422-24064). The fellowship from the Mexican Council for Science and Technology (CONACYT) is gratefully acknowledged. The support provided by Imagine That!®™ by donating of a full version of ExtendSim®™ through the ExtendSim Research Grant is gratefully acknowledged. The research work on the IBSAL model by Sokhansanj, Turhollow, Ebadian and Webb was relevant for the development of the proposed approach.

Keywords

  • Biofuels
  • Discrete-event simulation
  • Logistics
  • Renewable energy
  • Simulation-based optimization
  • Supply chain

Fingerprint

Dive into the research topics of 'Simulation-based approach for the optimization of a biofuel supply chain'. Together they form a unique fingerprint.

Cite this