Abstract
The Used Nuclear Fuel Storage, Transportation and Disposal Analysis Resource and Data System (UNF-ST&DARDS) is used to perform dose rate calculations for spent nuclear fuel (SNF) transportation packages based on the actual physical and nuclear characteristics (i.e., assembly design, burnup, initial enrichment, and cooling time) of the as-loaded SNF. Nuclear fuel data, transportation package model templates, and SNF canister loading map information residing within the tool facilitate automated generation of SCALE input files for radiation source term and dose rate calculations. Transportation package specific models developed for UNF-ST&DARDS dose rate analyses are described in detail. UNF-ST&DARDS dose rate analyses were performed for over 400 SNF canisters from 16 sites in their designated transportation casks. For simplicity, representative dose rate calculation results are presented as a function of time (i.e., selected calendar years between 2020 and 2100) for 73 SNF canisters in dry storage at four sites. For these canisters, the projected maximum dose rate values at 2 m from the lateral surfaces of the vehicle under normal conditions of transport (NCT) would vary between 1.9 and 11.5 mrem/h in 2020. Five SNF canisters will exceed the regulatory dose rate limit of 10 mrem/h at 2 m in 2020, and the analyzed SNF canisters will comply with regulatory dose rate limits by 2030. An analysis of the impact on the dose rate of fuel failure and reconfiguration during transportation indicated that the maximum dose rate for hypothetical accident conditions will be unaffected, and the NCT maximum dose rate at 2 m would have a maximum increase by a factor of 1.7 for a representative pressurized water reactor package and by a factor of 2.6 for a representative boiling water reactor package relative to intact fuel. Analysis of the actual heat loading and the dose rate at 2 m from the lateral surface of the vehicle for the five SNF canisters exceeding the NCT regulatory dose rate limit of 10 mrem/h in 2020 showed that the dose rate could be more limiting with respect to regulatory requirements than the heat loading; i.e., the canister transportability date may be evaluated based on the transportation package's external dose rate.
Original language | English |
---|---|
Pages (from-to) | 276-288 |
Number of pages | 13 |
Journal | Nuclear Technology |
Volume | 199 |
Issue number | 3 |
DOIs | |
State | Published - Sep 2017 |
Funding
This manuscript has been authored by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the DOE. Development of UNF-ST&DARDS shielding analysis capability was accomplished with funding provided by the DOE-NE.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
UT-Battelle | DE-AC05-00OR22725 |
Keywords
- Shielding
- Spent nuclear fuel
- UNF-ST&DARDS