TY - JOUR
T1 - Sequence and temperature influence on kinetics of DNA strand displacement at gold electrode surfaces
AU - Biala, Katarzyna
AU - Sedova, Ada
AU - Flechsig, Gerd Uwe
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/9/16
Y1 - 2015/9/16
N2 - Understanding complex contributions of surface environment to tethered nucleic acid sensing experiments has proven challenging, yet it is important because it is essential for interpretation and calibration of indispensable methods, such as microarrays. We investigate the effects of DNA sequence and solution temperature gradients on the kinetics of strand displacement at heated gold wire electrodes, and at gold disc electrodes in a heated solution. Addition of a terminal double mismatch (toehold) provides a reduction in strand displacement energy barriers sufficient to probe the secondary mechanisms involved in the hybridization process. In four different DNA capture probe sequences (relevant for the identification of genetically modified maize MON810), all but one revealed a high activation energy up to 200 kJ/mol during hybridization, that we attribute to displacement of protective strands by capture probes. Protective strands contain 4 to 5 mismatches to ease their displacement by the surface-confined probes at the gold electrodes. A low activation energy (30 kJ/mol) was observed for the sequence whose protective strand contained a toehold and one central mismatch, its kinetic curves displayed significantly different shapes, and we observed a reduced maximum signal intensity as compared to other sequences. These findings point to potential sequence-related contributions to oligonucleotide diffusion influencing kinetics. Additionally, for all sequences studied with heated wire electrodes, we observed a 23 K lower optimal hybridization temperature in comparison with disc electrodes in heated solution, and greatly reduced voltammetric signals after taking into account electrode surface area. We propose that thermodiffusion due to temperature gradients may influence both hybridization and strand displacement kinetics at heated microelectrodes, an explanation supported by computational fluid dynamics. DNA assays with surface-confined capture probes and temperature gradients should not neglect potential influences of thermodiffusion as well as sequence-related effects. Furthermore, studies attempting to characterize surface-tethered environments should consider thermodiffusion if temperature gradients are involved.
AB - Understanding complex contributions of surface environment to tethered nucleic acid sensing experiments has proven challenging, yet it is important because it is essential for interpretation and calibration of indispensable methods, such as microarrays. We investigate the effects of DNA sequence and solution temperature gradients on the kinetics of strand displacement at heated gold wire electrodes, and at gold disc electrodes in a heated solution. Addition of a terminal double mismatch (toehold) provides a reduction in strand displacement energy barriers sufficient to probe the secondary mechanisms involved in the hybridization process. In four different DNA capture probe sequences (relevant for the identification of genetically modified maize MON810), all but one revealed a high activation energy up to 200 kJ/mol during hybridization, that we attribute to displacement of protective strands by capture probes. Protective strands contain 4 to 5 mismatches to ease their displacement by the surface-confined probes at the gold electrodes. A low activation energy (30 kJ/mol) was observed for the sequence whose protective strand contained a toehold and one central mismatch, its kinetic curves displayed significantly different shapes, and we observed a reduced maximum signal intensity as compared to other sequences. These findings point to potential sequence-related contributions to oligonucleotide diffusion influencing kinetics. Additionally, for all sequences studied with heated wire electrodes, we observed a 23 K lower optimal hybridization temperature in comparison with disc electrodes in heated solution, and greatly reduced voltammetric signals after taking into account electrode surface area. We propose that thermodiffusion due to temperature gradients may influence both hybridization and strand displacement kinetics at heated microelectrodes, an explanation supported by computational fluid dynamics. DNA assays with surface-confined capture probes and temperature gradients should not neglect potential influences of thermodiffusion as well as sequence-related effects. Furthermore, studies attempting to characterize surface-tethered environments should consider thermodiffusion if temperature gradients are involved.
KW - DNA strand displacement
KW - activation energy
KW - gold electrode
KW - osmium tetroxide bipyridine
KW - square-wave voltammetry
KW - thermodiffusion (Soret effect)
UR - https://www.scopus.com/pages/publications/84941686538
U2 - 10.1021/acsami.5b04435
DO - 10.1021/acsami.5b04435
M3 - Article
C2 - 26302819
AN - SCOPUS:84941686538
SN - 1944-8244
VL - 7
SP - 19948
EP - 19959
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 36
ER -