TY - GEN
T1 - Sensor planning for automated and persistent object tracking with multiple cameras
AU - Yao, Yi
AU - Chen, Chung Hao
AU - Abidi, Besma
AU - Page, David
AU - Koschan, Andreas
AU - Abidi, Mongi
PY - 2008
Y1 - 2008
N2 - Most existing camera placement algorithms focus on coverage and/or visibility analysis, which ensures that the object of interest is visible in the camera's field of view (FOV). However, visibility, a fundamental requirement of object tracking, is insufficient for persistent and automated tracking. In such applications, a continuous and consistently labeled trajectory of the same object should be maintained across different cameras' views. Therefore, a sufficient overlap between the cameras' FOVs should be secured so that camera handoff can be executed successfully and automatically before the object of interest becomes untraceable or unidentifiable. The proposed sensor planning method improves existing algorithms by adding handoff rate analysis, which preserves necessary overlapped FOVs for an optimal handoff success rate. In addition, special considerations such as resolution and frontal view requirements are addressed using two approaches: direct constraint and adaptive weight. The resulting camera placement is compared with a reference algorithm by Erdem and Sclaroff. Significantly improved handoff success rate and frontal view percentage are illustrated via experiments using typical office floor plans.
AB - Most existing camera placement algorithms focus on coverage and/or visibility analysis, which ensures that the object of interest is visible in the camera's field of view (FOV). However, visibility, a fundamental requirement of object tracking, is insufficient for persistent and automated tracking. In such applications, a continuous and consistently labeled trajectory of the same object should be maintained across different cameras' views. Therefore, a sufficient overlap between the cameras' FOVs should be secured so that camera handoff can be executed successfully and automatically before the object of interest becomes untraceable or unidentifiable. The proposed sensor planning method improves existing algorithms by adding handoff rate analysis, which preserves necessary overlapped FOVs for an optimal handoff success rate. In addition, special considerations such as resolution and frontal view requirements are addressed using two approaches: direct constraint and adaptive weight. The resulting camera placement is compared with a reference algorithm by Erdem and Sclaroff. Significantly improved handoff success rate and frontal view percentage are illustrated via experiments using typical office floor plans.
UR - http://www.scopus.com/inward/record.url?scp=51949113123&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587515
DO - 10.1109/CVPR.2008.4587515
M3 - Conference contribution
AN - SCOPUS:51949113123
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -