Self-assembly of molecular wires on H-terminated Si(100) surfaces driven by London dispersion forces

Guo Li, Valentino R. Cooper, Jun Hyung Cho, Shixuan Du, Hong Jun Gao, Zhenyu Zhang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

First-principles calculations combined with kinetic Monte Carlo simulations are carried out to unambiguously demonstrate the vital role of van der Waals (vdW) interactions in the self-assembly of styrene nanowires on H-terminated Si(100) surfaces. We find that, only with the inclusion of London dispersion forces, accounting for the attractive parts of vdW interactions, are the effective intermolecular interactions reversed from repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular nanowires. The present paper represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.

Original languageEnglish
Article number241406
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number24
DOIs
StatePublished - Dec 22 2011

Funding

FundersFunder number
National Science Foundation0906025

    Fingerprint

    Dive into the research topics of 'Self-assembly of molecular wires on H-terminated Si(100) surfaces driven by London dispersion forces'. Together they form a unique fingerprint.

    Cite this