Abstract
Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum-copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C-C bond scission that leads to loss of selectivity and catalyst deactivation. 3-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.
Original language | English |
---|---|
Article number | 8550 |
Journal | Nature Communications |
Volume | 6 |
DOIs | |
State | Published - Oct 9 2015 |
Funding
We thank the Department of Energy (DE-FG02-05ER15730) (J. L., M. Y.) and the National Science Foundation (CBET-1159882) (F. L., J. L. 2013–2014) for the financial support of this work. M. M. thanks Tufts Chemistry for an Illumina Fellowship. J. L. thanks Prof. Terry Haas (Tufts University) for assistance with the EXAFS data analysis, Dr. Yong Zhang (MIT’s Center for Material Science and Engineering) for his assistance with High resolution transmission electron microscopy (HRTEM, and Drs. Sungsik Lee (Argonne National Lab), Benjamin Reinhart (Argonne National Lab), Drs. Syed Khalid (Brookhaven National Lab), Nebojsa Marinkovic (Brookhaven National Lab) for their assistance with the in-situ XAS experiments. Aberration-corrected electron microscopy research at Oak Ridge National Laboratory was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program.
Funders | Funder number |
---|---|
National Science Foundation | CBET-1159882, 1159882 |
U.S. Department of Energy | DE-FG02-05ER15730 |
Office of Energy Efficiency and Renewable Energy |