Abstract
In a secure collaborative environment, tera-bytes of data generated from powerful scientific instruments are used to train secure machine learning (ML) models on exascale computing systems, which are then securely shared with internal or external collaborators as cloud-based services. Devising such a secure platform is necessary for seamless scientific knowledge sharing without compromising individual, or institute-level, intellectual property and privacy details. By enabling new computing opportunities with sensitive data, we envision a secure collaborative environment that will play a significant role in accelerating scientific discovery. Several recent technological advancements have made it possible to realize these capabilities. In this paper, we present our efforts at ORNL toward developing a secure computation platform. We present a use case where scientific data generated from complex instruments, like those at the Spallation Neutron Source (SNS), are used to train a differential privacy enabled deep learning (DL) network on Summit, which is then hosted as a secure multi-party computation (MPC) service on ORNL’s Compute and Data Environment for Science (CADES) cloud computing platform for third-party inference. In this feasibility study, we discuss the challenges involved, elaborate on leveraged technologies, analyze relevant performance results and present the future vision of our work to establish secure collaboration capabilities within and outside of ORNL.
Original language | English |
---|---|
Title of host publication | Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation - 21st Smoky Mountains Computational Sciences and Engineering, SMC 2021, Revised Selected Papers |
Editors | [given-name]Jeffrey Nichols, [given-name]Arthur ‘Barney’ Maccabe, James Nutaro, Swaroop Pophale, Pravallika Devineni, Theresa Ahearn, Becky Verastegui |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 139-156 |
Number of pages | 18 |
ISBN (Print) | 9783030964979 |
DOIs | |
State | Published - 2022 |
Event | 21st Smoky Mountains Computational Sciences and Engineering Conference, SMC 2021 - Virtual, Online Duration: Oct 18 2021 → Oct 20 2021 |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Volume | 1512 CCIS |
ISSN (Print) | 1865-0929 |
ISSN (Electronic) | 1865-0937 |
Conference
Conference | 21st Smoky Mountains Computational Sciences and Engineering Conference, SMC 2021 |
---|---|
City | Virtual, Online |
Period | 10/18/21 → 10/20/21 |
Bibliographical note
Publisher Copyright:© 2022, Springer Nature Switzerland AG.
Funding
Acknowledgements. This work was supported by the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory, under LDRD project 9831. A portion of this research at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. C.S. acknowledges the EQ-SANS beamline staff: Changwoo Do, Carrie Gao, and William Heller, that also assisted in the calibration samples data collection over the time period. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We would like to acknowledge the timely support and assistance provided by Chris Layton and Daniel Dewey. We very much appreciate their help and support. Keywords: Differential privacy · Secure multi-party computation · Secure sharing of scientific knowledge Notice of Copyright This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/ downloads/doe-public-access-plan). This work was supported by the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory, under LDRD project 9831. A portion of this research at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. C.S. acknowledges the EQ-SANS beamline staff: Changwoo Do, Carrie Gao, and William Heller, that also assisted in the calibration samples data collection over the time period. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We would like to acknowledge the timely support and assistance provided by Chris Layton and Daniel Dewey. We very much appreciate their help and support.
Funders | Funder number |
---|---|
CADES | |
Data Environment for Science | |
Notice of Copyright | |
Scientific User Facilities Division | |
William Heller | |
U.S. Department of Energy | |
Office of Science | DE-AC05-00OR22725 |
Basic Energy Sciences | |
Laboratory Directed Research and Development | 9831 |
Keywords
- Differential privacy
- Secure multi-party computation
- Secure sharing of scientific knowledge