Abstract
Given the tremendous volume of accessible Earth Observation (EO) data, there is a need to develop scalable Geospatial Artificial Intelligence (GeoAI) solutions for time-sensitive applications. Scalability in this context refers to rapidly processing large-scale EO data using high performance computing resources. Accurate mapping of the built environment from remote sensing (RS) imagery has been one of the crucial components in GeoAI workflows for a wide spectrum of humanitarian applications. Derived vector data of built environment is often leveraged for disaster preparedness and response activities. However, factors such as differences in ortho-rectification, atmospheric conditions and human error, results in spatial misalignment between vector data and the timely available RS imagery. Model training for downstream tasks such as object detection, change analysis, etc., is negatively impacted due to such spatial misalignment. Although there has been progress towards automatic alignment of vector data, the lack of scalability remains an open research challenge. This paper proposes to leverage parallel computing to optimize an automatic vector data alignment workflow. It further employs CPU-level multi-core parallelism for improving the performance of the workflow for scalable built environment mapping. We report observations and discuss findings from the preliminary experiments performed on the Summit Supercomputer.
Original language | English |
---|---|
Title of host publication | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1676-1679 |
Number of pages | 4 |
ISBN (Electronic) | 9798350320107 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States Duration: Jul 16 2023 → Jul 21 2023 |
Publication series
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Volume | 2023-July |
Conference
Conference | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 |
---|---|
Country/Territory | United States |
City | Pasadena |
Period | 07/16/23 → 07/21/23 |
Funding
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05- 00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- geospatial
- raster
- remote sensing imagery
- scalable
- vector data alignment