Scaling Automatic Vector Data Alignment to Satellite Imagery

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Given the tremendous volume of accessible Earth Observation (EO) data, there is a need to develop scalable Geospatial Artificial Intelligence (GeoAI) solutions for time-sensitive applications. Scalability in this context refers to rapidly processing large-scale EO data using high performance computing resources. Accurate mapping of the built environment from remote sensing (RS) imagery has been one of the crucial components in GeoAI workflows for a wide spectrum of humanitarian applications. Derived vector data of built environment is often leveraged for disaster preparedness and response activities. However, factors such as differences in ortho-rectification, atmospheric conditions and human error, results in spatial misalignment between vector data and the timely available RS imagery. Model training for downstream tasks such as object detection, change analysis, etc., is negatively impacted due to such spatial misalignment. Although there has been progress towards automatic alignment of vector data, the lack of scalability remains an open research challenge. This paper proposes to leverage parallel computing to optimize an automatic vector data alignment workflow. It further employs CPU-level multi-core parallelism for improving the performance of the workflow for scalable built environment mapping. We report observations and discuss findings from the preliminary experiments performed on the Summit Supercomputer.

Original languageEnglish
Title of host publicationIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1676-1679
Number of pages4
ISBN (Electronic)9798350320107
DOIs
StatePublished - 2023
Event2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
Duration: Jul 16 2023Jul 21 2023

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2023-July

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Country/TerritoryUnited States
CityPasadena
Period07/16/2307/21/23

Funding

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05- 00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Keywords

  • geospatial
  • raster
  • remote sensing imagery
  • scalable
  • vector data alignment

Fingerprint

Dive into the research topics of 'Scaling Automatic Vector Data Alignment to Satellite Imagery'. Together they form a unique fingerprint.

Cite this