Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile

Ji Won Moon, Ilia N. Ivanov, Chad E. Duty, Lonnie J. Love, Adam J. Rondinone, Wei Wang, Yi Liang Li, Andrew S. Madden, Jennifer J. Mosher, Michael Z. Hu, Anil K. Suresh, Claudia J. Rawn, Hyunsung Jung, Robert J. Lauf, Tommy J. Phelps

    Research output: Contribution to journalArticlepeer-review

    32 Scopus citations

    Abstract

    We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd2+ cations to produce thermodynamically favored NP in a single step at 65 C with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24 L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes.

    Original languageEnglish
    Pages (from-to)1263-1271
    Number of pages9
    JournalJournal of Industrial Microbiology and Biotechnology
    Volume40
    Issue number11
    DOIs
    StatePublished - Nov 2013

    Funding

    This research was supported by the Department of Energy’s (DOE) Advanced Manufacturing Office (AMO), Nanomanufacturing for Energy Efficiency (NT08845) and by the Laboratory Directed Research and Development Program of ORNL (L05512). Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at the ORNL Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. The authors also appreciate James G. Elkins for constructive comments, Tae Hwan Kim for peak analysis, and Sue Carroll for cell counting.

    Keywords

    • CdS nanostructured particles
    • Fermentation
    • Nano-biotechnology
    • Photoluminescence
    • Scalable synthesis
    • Thermoanaerobacter

    Fingerprint

    Dive into the research topics of 'Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile'. Together they form a unique fingerprint.

    Cite this