Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides

Yu Xie, Michael Naguib, Vadym N. Mochalin, Michel W. Barsoum, Yury Gogotsi, Xiqian Yu, Kyung Wan Nam, Xiao Qing Yang, Alexander I. Kolesnikov, Paul R.C. Kent

Research output: Contribution to journalArticlepeer-review

1270 Scopus citations

Abstract

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti 3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti 3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

Original languageEnglish
Pages (from-to)6385-6394
Number of pages10
JournalJournal of the American Chemical Society
Volume136
Issue number17
DOIs
StatePublished - Apr 30 2014

Funding

FundersFunder number
Office of Basic Energy Sciences
Office of Science
U.S. Department of EnergyDE-AC02-05CH11231

    Fingerprint

    Dive into the research topics of 'Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides'. Together they form a unique fingerprint.

    Cite this