TY - JOUR
T1 - Role of low-energy phonons with mean-free-paths >0.8 μ m in heat conduction in silicon
AU - Jiang, Puqing
AU - Lindsay, Lucas
AU - Koh, Yee Kan
N1 - Publisher Copyright:
© 2016 Author(s).
PY - 2016/6/28
Y1 - 2016/6/28
N2 - Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. Here, we investigate the contribution of low-energy phonons with ℓ > 0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1 ≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcross measurements. We find from our Λcross measurements that phonons with ℓ > 0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K, while phonons with ℓ > 3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation model, we demonstrate that macroscopic damping (e.g., Akhieser's damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.
AB - Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. Here, we investigate the contribution of low-energy phonons with ℓ > 0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1 ≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcross measurements. We find from our Λcross measurements that phonons with ℓ > 0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K, while phonons with ℓ > 3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation model, we demonstrate that macroscopic damping (e.g., Akhieser's damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.
UR - http://www.scopus.com/inward/record.url?scp=84977117372&partnerID=8YFLogxK
U2 - 10.1063/1.4954674
DO - 10.1063/1.4954674
M3 - Article
AN - SCOPUS:84977117372
SN - 0021-8979
VL - 119
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 24
M1 - 245705
ER -