Role of hydrogen bonds in the fast dynamics of binary glasses of trehalose and glycerol: A molecular dynamics simulation study

Taner E. Dirama, Gustavo A. Carri, Alexei P. Sokolov

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Trehalose-glycerol mixtures are known to be effective in the long time preservation of proteins. However, the microscopic mechanism of their effective preservation abilities remains unclear. In this article we present a molecular dynamics simulation study of the short time, less than 1 ns, dynamics of four trehalose-glycerol mixtures at temperatures below the glass transition temperature. We found that a mixture of 5% glycerol and 95% trehalose has the most suppressed short time dynamics (fast dynamics). This result agrees with the experimental analysis of the mean-square displacement of the hydrogen atoms, as measured via neutron scattering, and correlates with the experimentally observed enhancement of the stability of some enzymes at this particular concentration. Our microscopic analysis suggests that the formation of a robust intermolecular hydrogen bonding network is most effective at this concentration and is the main mechanism for the suppression of the fast dynamics.

Original languageEnglish
Article number114505
JournalJournal of Chemical Physics
Volume122
Issue number11
DOIs
StatePublished - Mar 15 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Role of hydrogen bonds in the fast dynamics of binary glasses of trehalose and glycerol: A molecular dynamics simulation study'. Together they form a unique fingerprint.

Cite this