TY - JOUR
T1 - Robust implementation of generative modeling with parametrized quantum circuits
AU - Leyton-Ortega, Vicente
AU - Perdomo-Ortiz, Alejandro
AU - Perdomo, Oscar
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2021/6
Y1 - 2021/6
N2 - Although the performance of hybrid quantum-classical algorithms is highly dependent on the selection of the classical optimizer and the circuit ansätze (Benedetti et al, npj Quantum Inf 5:45, 2019; Hamilton et al, 2018; Zhu et al, 2018), a robust and thorough assessment on-hardware of such features has been missing to date. From the optimizer perspective, the primary challenge lies in the solver’s stochastic nature, and their significant variance over the random initialization. Therefore, a robust comparison requires one to perform several training curves for each solver before one can reach conclusions about their typical performance. Since each of the training curves requires the execution of thousands of quantum circuits in the quantum computer, such a robust study remained a steep challenge for most hybrid platforms available today. Here, we leverage on Rigetti’s Quantum Cloud Services (QCS™) to overcome this implementation barrier, and we study the on-hardware performance of the data-driven quantum circuit learning (DDQCL) for three different state-of-the-art classical solvers, and on two-different circuit ansätze associated to different entangling connectivity graphs for the same task. Additionally, we assess the gains in performance from varying circuit depths. To evaluate the typical performance associated with each of these settings in this benchmark study, we use at least five independent runs of DDQCL towards the generation of quantum generative models capable of capturing the patterns of the canonical Bars and Stripes dataset. In this experimental benchmarking, the gradient-free optimization algorithms show an outstanding performance compared to the gradient-based solver. In particular, one of them had better performance when handling the unavoidable noisy objective function to be minimized under experimental conditions.
AB - Although the performance of hybrid quantum-classical algorithms is highly dependent on the selection of the classical optimizer and the circuit ansätze (Benedetti et al, npj Quantum Inf 5:45, 2019; Hamilton et al, 2018; Zhu et al, 2018), a robust and thorough assessment on-hardware of such features has been missing to date. From the optimizer perspective, the primary challenge lies in the solver’s stochastic nature, and their significant variance over the random initialization. Therefore, a robust comparison requires one to perform several training curves for each solver before one can reach conclusions about their typical performance. Since each of the training curves requires the execution of thousands of quantum circuits in the quantum computer, such a robust study remained a steep challenge for most hybrid platforms available today. Here, we leverage on Rigetti’s Quantum Cloud Services (QCS™) to overcome this implementation barrier, and we study the on-hardware performance of the data-driven quantum circuit learning (DDQCL) for three different state-of-the-art classical solvers, and on two-different circuit ansätze associated to different entangling connectivity graphs for the same task. Additionally, we assess the gains in performance from varying circuit depths. To evaluate the typical performance associated with each of these settings in this benchmark study, we use at least five independent runs of DDQCL towards the generation of quantum generative models capable of capturing the patterns of the canonical Bars and Stripes dataset. In this experimental benchmarking, the gradient-free optimization algorithms show an outstanding performance compared to the gradient-based solver. In particular, one of them had better performance when handling the unavoidable noisy objective function to be minimized under experimental conditions.
KW - Generative modeling
KW - NISQ
KW - Quantum circuit Born machine
KW - Quantum machine learning
KW - Unsupervised machine learning
UR - http://www.scopus.com/inward/record.url?scp=85114077260&partnerID=8YFLogxK
U2 - 10.1007/s42484-021-00040-2
DO - 10.1007/s42484-021-00040-2
M3 - Article
AN - SCOPUS:85114077260
SN - 2524-4906
VL - 3
JO - Quantum Machine Intelligence
JF - Quantum Machine Intelligence
IS - 1
M1 - 17
ER -