Robust 360° video streaming via non-linear sampling

Mijanur Palash, Voicu Popescu, Amit Sheoran, Sonia Fahmy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We propose CoRE, a 360° video streaming approach that reduces bandwidth requirements compared to transferring the entire 360° video. CoRE uses non-linear sampling in both the spatial and temporal domains to achieve robustness to view direction prediction error and to transient wireless network bandwidth fluctuation. Each CoRE frame samples the environment in all directions, with full resolution over the predicted field of view and gradually decreasing resolution at the periphery, so that missing pixels are avoided, irrespective of the view prediction error magnitude. A CoRE video chunk has a main part at full frame rate, and an extension part at a gradually decreasing frame rate, which avoids stalls while waiting for a delayed transfer. We evaluate a prototype implementation of CoRE through trace-based experiments and a user study, and find that, compared to tiling with low-resolution padding, CoRE reduces data transfer amounts, stalls, and H.264 decoding overhead, increases frame rates, and eliminates missing pixels.

Original languageEnglish
Title of host publicationINFOCOM 2021 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780738112817
DOIs
StatePublished - May 10 2021
Event40th IEEE Conference on Computer Communications, INFOCOM 2021 - Vancouver, Canada
Duration: May 10 2021May 13 2021

Publication series

NameProceedings - IEEE INFOCOM
Volume2021-May
ISSN (Print)0743-166X

Conference

Conference40th IEEE Conference on Computer Communications, INFOCOM 2021
Country/TerritoryCanada
CityVancouver
Period05/10/2105/13/21

Funding

This work has been supported in part by NSF grant CNS-1717493.

Fingerprint

Dive into the research topics of 'Robust 360° video streaming via non-linear sampling'. Together they form a unique fingerprint.

Cite this