Abstract
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a pulsed linear plasma device that uses a radio frequency (RF) helicon antenna and a helicon ceramic window as the plasma ionization source. Modeling performed within this work on the helicon operations predicts hot spots on the helicon ceramic window due to an RF-induced sheath. The RF sheath potential leads to physical sputtering of the ceramic window predominantly where the helicon antenna sits around the helicon window. The role of oxygen in sputtering within Proto-MPEX is also investigated and is needed to match the experimental data. Experiments on Proto-MPEX show reasonable agreement with the modeled erosion/redeposition pattern on the helicon window, and the modeled impurity flux to the target shows radial transport within the device as expected from classical collisional impurity transport. Temperature screening of impurities is shown to be needed for Proto-MPEX to reduce impurity flux to the target. The modeling approach used in this work can be applied to other plasma RF applications for the determination of impurity production and transport.
Original language | English |
---|---|
Article number | 103508 |
Journal | Physics of Plasmas |
Volume | 28 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2021 |
Funding
This manuscript was authored by UT-Battelle, LLC under Contract No. DE-AC05–00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http:// energy.gov/ downloads/doe-public-access-plan).