Abstract
Soil organic carbon (SOC) change influences the life-cycle assessment (LCA) calculations for globally traded bio-based products. Broad agreement on the importance of SOC measurement stands in contrast with inconsistent measurement methods. This paper focuses on published SOC research on lands managed for maize (Zea mays L.) in the U.S. and sugarcane (Saccharum officinarum L.) in Brazil. A literature review found that reported SOC measurement protocols reflect different sampling strategies, measurement techniques, and laboratory analysis methods. Variability in sampling techniques (pits versus core samples), depths, increments for analysis, and analytical procedures (wet oxidation versus dry combustion) can influence reported SOC values. To improve consistency and comparability in future SOC studies, the authors recommend that: (a) the methods applied for each step in SOC studies be documented; (b) a defined protocol for soil pits or coring be applied; (c) samples be analyzed at 10 cm intervals for the full rooting depth and at 20 cm intervals below rooting until reaching 100 cm; (d) stratified sampling schemes be applied where possible to reflect variability across study sites; (e) standard laboratory techniques be used to differentiate among labile and stable SOC fractions; and (f) more long-term, diachronic approaches be used to assess SOC change. We conclude with suggestions for future research to further improve the comparability of SOC measurements across sites and nations.
Original language | English |
---|---|
Article number | 53 |
Journal | Sustainability (Switzerland) |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2018 |
Funding
Acknowledgments: Financial Support: NIPE, Grant 2012/06933-6 S\u00E3o Paulo Research Foundation (FAPESP), NLAE, ORNL, UT-Battelle LLC, US. Department of Agriculture\u2014Agricultural Research Service, the National Science Foundation\u2019s Partnerships in International Research and Education (PIRE) Program IIA #1243444, and US Department of Energy, BioEnergy Technologies Office (BETO). This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. NIPE, Grant 2012/06933-6 S\u00E3o Paulo Research Foundation (FAPESP), NLAE, ORNL, UT-Battelle LLC, US. Department of Agriculture-Agricultural Research Service, the National Science Foundation's Partnerships in International Research and Education (PIRE) Program IIA #1243444, and US Department of Energy, BioEnergy Technologies Office (BETO). This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Keywords
- Bioenergy
- Carbon sequestration
- Ethanol
- Maize
- Soil sampling
- Sugarcane