Retrofitting Word Embeddings with the UMLS Metathesaurus for Clinical Information Extraction

Mohammed Alawad, S. M.Shamimul Hasan, J. Blair Christian, Georgia Tourassi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Deep learning has surged in popularity and proven to be effective for various artificial intelligence applications including information extraction from cancer pathology reports. Since word representation is a core unit that enables deep learning algorithms to understand words and be able to perform NLP, this representation must include as much information as possible to help these algorithms achieve high classification performance. Therefore, in this work in addition to the distributional information of words in large sized corpora, we use UMLS vocabulary resources to enrich the vector space representation of words with the semantic relations between words. These resources provide many terminologies pertaining to cancer. The refined word embeddings are used with a convolutional neural (CNN) model to extract four data elements from cancer pathology reports; ICD-O-3 tumor topography codes, tumor laterality, behavior, and histological grade. We observed that using UMLS vocabulary resources to enrich word embeddings of CNN models consistently outperformed CNN models without pre-training word embeddings and even with pre-trained word embeddings on a domain specific corpus across all four tasks. The results show marginal improvement on the laterality task, but a significant improvement on the other tasks, especially for the macro-f score. Specifically, the improvements are 3%, 13%, and 15% for tumor site, histological grade, and behavior tasks, respectively. This approach is encouraging to enrich word embeddings with more clinical data resources to be used for information abstraction tasks from clinical pathology reports.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE International Conference on Big Data, Big Data 2018
EditorsNaoki Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen Ahmed, Mu Qiao, Yang Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, Jeffrey Saltz
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2838-2846
Number of pages9
ISBN (Electronic)9781538650356
DOIs
StatePublished - Jul 2 2018
Event2018 IEEE International Conference on Big Data, Big Data 2018 - Seattle, United States
Duration: Dec 10 2018Dec 13 2018

Publication series

NameProceedings - 2018 IEEE International Conference on Big Data, Big Data 2018

Conference

Conference2018 IEEE International Conference on Big Data, Big Data 2018
Country/TerritoryUnited States
CitySeattle
Period12/10/1812/13/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Funding

This manuscript has been authored by UT - Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
National Institutes of Health
U.S. Department of Energy
National Cancer Institute
Office of Science

    Keywords

    • UMLS
    • Word embeddings
    • convolutional neural networks
    • natural language processing

    Fingerprint

    Dive into the research topics of 'Retrofitting Word Embeddings with the UMLS Metathesaurus for Clinical Information Extraction'. Together they form a unique fingerprint.

    Cite this