Results of using frequency banded SAFT for examining three types of defects

Dwight Clayton, Alan Barker, Hector Santos-Villalobos

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties; its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular Nondestructive Evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply the frequency banded Synthetic Aperture Focusing Technique (SAFT) technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects. These twenty embedded defects simulate voids (honeycombs), delamination, and embedded organic construction debris. Using the time-frequency technique of wavelet packet decomposition and reconstruction, the spectral content of the signal can be divided into two resulting child nodes. The resulting two nodes can then also be divided into two child nodes with each child node containing half of the bandwidth (spectral content) of its parent node. This process can be repeated until the bandwidth of the child nodes is sufficiently small. Once the desired bandwidth has been obtained, the band limited signal can be analyzed using SAFT, enabling the visualization of reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. This paper examines the benefits of using frequency banded SAFT.

Original languageEnglish
Title of host publication43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36
EditorsLeonard J. Bond, Dale E. Chimenti
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414747
DOIs
StatePublished - Feb 16 2017
Event43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2016 - Atlanta, United States
Duration: Jul 17 2016Jul 22 2016

Publication series

NameAIP Conference Proceedings
Volume1806
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2016
Country/TerritoryUnited States
CityAtlanta
Period07/17/1607/22/16

Fingerprint

Dive into the research topics of 'Results of using frequency banded SAFT for examining three types of defects'. Together they form a unique fingerprint.

Cite this