TY - GEN
T1 - Results of tests to demonstrate a six-inch diameter coater for production of triso-coated particles for advanced gas reactor experiments
AU - Barnes, Charles M.
AU - Marshall, Douglas W.
AU - Hunn, John
AU - Tomlin, Bruce L.
AU - Keeley, Joe T.
PY - 2009
Y1 - 2009
N2 - The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR- 1, were produced at Oak Ridge National Laboratory (ORNL) in a two- inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.
AB - The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR- 1, were produced at Oak Ridge National Laboratory (ORNL) in a two- inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.
UR - http://www.scopus.com/inward/record.url?scp=70349884176&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:70349884176
SN - 9780791848548
T3 - 2008 Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
SP - 247
EP - 255
BT - 2008 Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
T2 - 2008 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
Y2 - 28 September 2008 through 1 October 2008
ER -