Abstract
The National Spherical Torus Experiment (NSTX) at Princeton University, Princeton, NJ, is designed to assess the potential of the low-aspect-ratio spherical torus concept for magnetic plasma confinement. The plasma has been heated by up to 7 MW of neutral beam injection (NBI) at an injection energy of 100 keV and up to 6 MW of high harmonic fast wave (HHFW) at 30 MHz. NSTX has achieved βT of 32%. A variety of MHD phenomena have been observed to limit β. NSTX has now begun addressing τE scaling, β limits, and current drive Issues. During the NBI heating experiments, a broad Ti profile with Ti up to 2 keV, Ti > Te anda large toroidal rotation were observed. Transport analysis suggests that the impurity ions have diffusivities approaching neoclassical. For L-Mode plasmas, τE is up to two times the ITER97L L-Mode scaling and exceeds the ITER98pby2 H-Mode scaling in some cases. Transitions to H-Mode have been observed which result in an approximate doubling of τE after the transition in some conditions. During HHFW heating, Te > Ti and Te up to 3.5 keV were observed. Current drive has been studied using both coaxial helicity injection with up to 390 kA of toroidal current and HHFW. HHFW has produced H-modes with significant bootstrap current fraction at low Ip, high q, and high βp.
Original language | English |
---|---|
Pages (from-to) | 60-67 |
Number of pages | 8 |
Journal | IEEE Transactions on Plasma Science |
Volume | 31 |
Issue number | 1 I |
DOIs | |
State | Published - Feb 2003 |
Funding
Manuscript received June 14, 2002; revised November 4, 2002. This work was supported in part by the U.S. Department of Energy under contract DE-AC02-76CH030.
Keywords
- Fusion reactors
- Plasma confinement
- Tokamaks