Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy

S. Jesse, S. Guo, A. Kumar, B. J. Rodriguez, R. Proksch, S. V. Kalinin

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.

Original languageEnglish
Article number405703
JournalNanotechnology
Volume21
Issue number40
DOIs
StatePublished - Oct 8 2010

Fingerprint

Dive into the research topics of 'Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy'. Together they form a unique fingerprint.

Cite this