Replicates, read numbers, and other important experimental design considerations for microbial RNA-seq identified using bacillus thuringiensis datasets

Punita Manga, Dawn M. Klingeman, Tse Yuan S. Lu, Tonia L. Mehlhorn, Dale A. Pelletier, Loren J. Hauser, Charlotte M. Wilson, Steven D. Brown

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, which were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). This study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.

Original languageEnglish
Article number794
JournalFrontiers in Microbiology
Volume7
Issue numberMAY
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© 2016 Manga, Klingeman, Lu, Mehlhorn, Pelletier, Hauser, Wilson and Brown.

Keywords

  • Coverage
  • DESeq2
  • Illumina
  • Negative binomial
  • Normalization
  • Replicates

Fingerprint

Dive into the research topics of 'Replicates, read numbers, and other important experimental design considerations for microbial RNA-seq identified using bacillus thuringiensis datasets'. Together they form a unique fingerprint.

Cite this