Reinforcement Learning-Based Approach for EMT Automation of Large-Scale PV Plants

Qianxue Xia, Kuldeep Kurte, Suman Debnath

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In the pursuit of efficient and precise modeling of large-scale power systems, particularly utility-scale photovoltaic (PV) plants, Electromagnetic Transient (EMT) simulations play a crucial role. As utility-scale PV plants increase in size and complexity, traditional computational methods become inadequate, necessitating more advanced techniques. This paper highlights the progressive efforts made to accelerate EMT simulations. A novel continuous reinforcement learning (RL) strategy is explored to automate the differentiation and categorization of stiff and non-stiff differential algebraic equations (DAEs). The use of stiff and non-stiff integration methods applied to relevant parts of the DAEs assists with the speed-up of the simulations. The paper details the data acquisition, development and offline training of the RL model, leading to its validation that demonstrates a high precision in optimizing simulation methods. The proposed RL promises to significantly enhance the efficacy of EMT simulations, offering a robust framework for the future of power system analysis.

Original languageEnglish
Title of host publication2024 IEEE Power and Energy Society General Meeting, PESGM 2024
PublisherIEEE Computer Society
ISBN (Electronic)9798350381832
DOIs
StatePublished - 2024
Event2024 IEEE Power and Energy Society General Meeting, PESGM 2024 - Seattle, United States
Duration: Jul 21 2024Jul 25 2024

Publication series

NameIEEE Power and Energy Society General Meeting
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Conference

Conference2024 IEEE Power and Energy Society General Meeting, PESGM 2024
Country/TerritoryUnited States
CitySeattle
Period07/21/2407/25/24

Keywords

  • Electromagnetic transient
  • Photovoltaic
  • Reinforcement learning

Fingerprint

Dive into the research topics of 'Reinforcement Learning-Based Approach for EMT Automation of Large-Scale PV Plants'. Together they form a unique fingerprint.

Cite this