TY - GEN
T1 - Reduction of transient payload swing in a harmonically excited boom crane by shaping luff commands
AU - Newman, Daniel
AU - Vaughan, Joshua
N1 - Publisher Copyright:
© Copyright 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The control of boom cranes is a topic that has generated a significant amount of research. Particularly, cranes mounted on ocean-going ships pose a significant challenge. Due to the harmonic disturbance resulting from ocean conditions, open-loop control methods such as input shaping have been largely ignored in this area of research. This work will develop linearized governing equations for a planar, harmonically-excited boom crane. Using these approximations, a command-shaping strategy that minimizes payload deflection during and shortly after a luff command will be presented. It is anticipated that this method will be used to smooth the transition to a closed-loop controller which engages after the operator-given command is complete.
AB - The control of boom cranes is a topic that has generated a significant amount of research. Particularly, cranes mounted on ocean-going ships pose a significant challenge. Due to the harmonic disturbance resulting from ocean conditions, open-loop control methods such as input shaping have been largely ignored in this area of research. This work will develop linearized governing equations for a planar, harmonically-excited boom crane. Using these approximations, a command-shaping strategy that minimizes payload deflection during and shortly after a luff command will be presented. It is anticipated that this method will be used to smooth the transition to a closed-loop controller which engages after the operator-given command is complete.
UR - http://www.scopus.com/inward/record.url?scp=85036625278&partnerID=8YFLogxK
U2 - 10.1115/DSCC2017-5247
DO - 10.1115/DSCC2017-5247
M3 - Conference contribution
AN - SCOPUS:85036625278
T3 - ASME 2017 Dynamic Systems and Control Conference, DSCC 2017
BT - Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
PB - American Society of Mechanical Engineers
T2 - ASME 2017 Dynamic Systems and Control Conference, DSCC 2017
Y2 - 11 October 2017 through 13 October 2017
ER -