Abstract
The ability to track a trajectory without significant error is a vital requirement for mobile robots. Numerous methods have been proposed to mitigate tracking error. While these trajectorytracking methods are efficient for rigid systems, many excite unwanted vibration when applied to flexible systems, leading to tracking error. This paper analyzes a modification of input shaping, which has been primarily used to limit residual vibration for point-to-point motion of flexible systems. Standard input shaping is modified using error-limiting constraints to reduce transient tracking error for the duration of the system's motion. This method is simulated with trajectory inputs constructed using line segments and Catmull-Rom splines. Error-limiting commands are shown to improve both spatial and temporal tracking performance and can be made robust to modeling errors in natural frequency.
Original language | English |
---|---|
Title of host publication | Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications |
Publisher | American Society of Mechanical Engineers |
ISBN (Electronic) | 9780791858288 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Event | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 - Tysons, United States Duration: Oct 11 2017 → Oct 13 2017 |
Publication series
Name | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 |
---|---|
Volume | 2 |
Conference
Conference | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 |
---|---|
Country/Territory | United States |
City | Tysons |
Period | 10/11/17 → 10/13/17 |
Funding
The authors would like to thank the Louisiana Board of Regents and HiBot for funding this research.