Reducing mechanical anisotropy in extrusion-based printed parts

Chad Duty, Jordan Failla, Seokpum Kim, John Lindahl, Brian Post, Lonnie Love, Vlastimil Kunc

Research output: Contribution to conferencePaperpeer-review

12 Scopus citations

Abstract

The mechanical performance of 3D printed components is highly dependent upon the orientation of the part relative to the build plane. Specifically for extrusion-based printing systems, the bond between successive layers (z-direction) can be 10-25% weaker than in the printed plane (x-y plane). As advanced applications call for fiber reinforced materials and larger print systems (such as the Big Area Additive Manufacturing system) extend the layer time, mechanical performance in the z-direction can decrease by 75-90%. This paper presents a patent-pending approach for improving mechanical performance in the z-direction by depositing material vertically across multiple layers during the build. The “z-pinning” process involves aligning voids across multiple (n) layers, which are then back-filled in a continuous fashion during the deposition of layer (n+1). The “z-pinning” approach has been demonstrated to be an effective approach for increasing the strength (20% increase) and toughness (200% increase) of printed parts in the z-direction.

Original languageEnglish
Pages1602-1611
Number of pages10
StatePublished - 2020
Event28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 - Austin, United States
Duration: Aug 7 2017Aug 9 2017

Conference

Conference28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017
Country/TerritoryUnited States
CityAustin
Period08/7/1708/9/17

Funding

A portion of the research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

FundersFunder number
U.S. Department of Energy
Advanced Manufacturing OfficeDE-AC05-00OR22725
Office of Energy Efficiency and Renewable Energy

    Fingerprint

    Dive into the research topics of 'Reducing mechanical anisotropy in extrusion-based printed parts'. Together they form a unique fingerprint.

    Cite this