TY - GEN
T1 - Recyclable Cellulose Fiber Reinforced Vitrimer Composite
AU - Rohewal, Sargun Singh
AU - Seo, Jiho
AU - Kanbargi, Nihal
AU - Naskar, Amit K.
N1 - Publisher Copyright:
© 2023 by DEStech Publications, Inc. and American Society for Composites. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Vitrimer is an innovative class of polymeric materials which demonstrates traditional thermoset-like mechanical and chemical resilience while still being able to flow on demand like a traditional thermoplastic through covalently adaptive dynamic linkages. Herein, high-performance cellulose fiber reinforced vitrimer composites are developed using an epoxy-based vitrimer and natural cellulose paper. The reinforced vitrimer composite was fabricated by impregnating the porous structure of cellulose paper with two curable monomers, followed by in-situ polymerization of the monomers inside the fibrous scaffold. The introduction of hydroxyl group present on the cellulosic framework assisted in a faster topological rearrangement of the crosslinked matrix through transesterification exchange reaction, thus imparting various sought-after properties like shape recovery and recyclability via simple thermal reprocessing. Moreover, the reinforced vitrimer composite exhibits superior tensile properties as high as 90 MPa with 15-25 volume% vitrimer loading due to the interfacial adhesion via ester exchange reaction between the epoxy matrix and functionalities on the cellulosic fibers. Noteworthily, the key ingredients of the resulting composite (i.e., epoxy-based vitrimer and cellulose fibers) can be comfortably recycled without using aggressive chemical treatment, enabling composite to be easily recycled or disposed of at the end of service life and assist in reducing the subsequent manufacturing cost. This study would shed light on the development of a recyclable polymer composite with exceptional mechanical properties while simultaneously demonstrating self-healing and shape memory capabilities.
AB - Vitrimer is an innovative class of polymeric materials which demonstrates traditional thermoset-like mechanical and chemical resilience while still being able to flow on demand like a traditional thermoplastic through covalently adaptive dynamic linkages. Herein, high-performance cellulose fiber reinforced vitrimer composites are developed using an epoxy-based vitrimer and natural cellulose paper. The reinforced vitrimer composite was fabricated by impregnating the porous structure of cellulose paper with two curable monomers, followed by in-situ polymerization of the monomers inside the fibrous scaffold. The introduction of hydroxyl group present on the cellulosic framework assisted in a faster topological rearrangement of the crosslinked matrix through transesterification exchange reaction, thus imparting various sought-after properties like shape recovery and recyclability via simple thermal reprocessing. Moreover, the reinforced vitrimer composite exhibits superior tensile properties as high as 90 MPa with 15-25 volume% vitrimer loading due to the interfacial adhesion via ester exchange reaction between the epoxy matrix and functionalities on the cellulosic fibers. Noteworthily, the key ingredients of the resulting composite (i.e., epoxy-based vitrimer and cellulose fibers) can be comfortably recycled without using aggressive chemical treatment, enabling composite to be easily recycled or disposed of at the end of service life and assist in reducing the subsequent manufacturing cost. This study would shed light on the development of a recyclable polymer composite with exceptional mechanical properties while simultaneously demonstrating self-healing and shape memory capabilities.
UR - http://www.scopus.com/inward/record.url?scp=85178573233&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85178573233
T3 - Proceedings of the American Society for Composites - 38th Technical Conference, ASC 2023
SP - 2173
EP - 2187
BT - Proceedings of the American Society for Composites - 38th Technical Conference, ASC 2023
A2 - Maiaru, Marianna
A2 - Odegard, Gregory
A2 - Bednarcyk, Brett
A2 - Pineda, Evan
PB - DEStech Publications
T2 - 38th Technical Conference of the American Society for Composites, ASC 2023
Y2 - 18 September 2023 through 20 September 2023
ER -