Recurrent neural network architecture search for geophysical emulation

Romit Maulik, Romain Egele, Bethany Lusch, Prasanna Balaprakash

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

Developing surrogate geophysical models from data is a key research topic in atmospheric and oceanic modeling because of the large computational costs associated with numerical simulation methods. Researchers have started applying a wide range of machine learning models, in particular neural networks, to geophysical data for forecasting without these constraints. Constructing neural networks for forecasting such data is nontrivial, however, and often requires trial and error. To address these limitations, we focus on developing proper-orthogonal-decomposition-based long short-term memory networks (PODLSTMs). We develop a scalable neural architecture search for generating stacked LSTMs to forecast temperature in the NOAA Optimum Interpolation Sea-Surface Temperature data set. Our approach identifies POD-LSTMs that are superior to manually designed variants and baseline time-series prediction methods. We also assess the scalability of different architecture search strategies on up to 512 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.

Original languageEnglish
Title of host publicationProceedings of SC 2020
Subtitle of host publicationInternational Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9781728199986
DOIs
StatePublished - Nov 2020
Externally publishedYes
Event2020 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020 - Virtual, Atlanta, United States
Duration: Nov 9 2020Nov 19 2020

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
Volume2020-November
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2020 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period11/9/2011/19/20

Keywords

  • Emulation
  • Geophysics
  • Recurrent neural networks

Fingerprint

Dive into the research topics of 'Recurrent neural network architecture search for geophysical emulation'. Together they form a unique fingerprint.

Cite this