Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys

Z. Wu, H. Bei, F. Otto, G. M. Pharr, E. P. George

Research output: Contribution to journalArticlepeer-review

725 Scopus citations

Abstract

The equiatomic high-entropy alloy FeNiCoCrMn is known to crystallize as a single phase with the face-centered cubic (FCC) crystal structure. To better understand this quinary solid solution alloy, we investigate various binary, ternary and quaternary alloys made from its constituent elements. Our goals are twofold: (i) to investigate which of these lower order systems also form solid solution alloys consisting of a single FCC phase, and (ii) to characterize their phase stability and recovery, recrystallization, and grain growth behaviors. X-ray diffraction (XRD) and scanning electron microscopy with backscattered electron images showed that three of the five possible quaternaries (FeNiCoCr, FeNiCoMn and NiCoCrMn), five of the ten possible ternaries (FeNiCo, FeNiCr, FeNiMn, NiCoCr, and NiCoMn), and two of the ten possible binaries (FeNi and NiCo) were single-phase FCC solid solutions in the cast and homogenized condition, whereas the others either had different crystal structures or were multi-phase. The single-phase FCC quaternary, FeNiCoCr, along with its equiatomic ternary and binary subsidiaries, were selected for further investigations of phase stability and the thermomechanical processing needed to obtain equiaxed grain structures. Only four of these subsidiary alloys - two binaries (FeNi and NiCo) and two ternaries (FeNiCo and NiCoCr) - were found to be single-phase FCC after rolling at room temperature followed by annealing for 1 h at temperatures of 300-1100 C. Pure Ni, which is FCC and one of the constituents of the quinary high-entropy alloy (FeNiCoCrMn), was also investigated for comparison with the higher order alloys. Among the materials investigated after thermomechanical processing (FeNiCoCr, FeNiCo, NiCoCr, FeNi, NiCo, and Ni), FeNiCo and Ni showed abnormal grain growth at relatively low annealing temperatures, while the other four showed normal grain growth behavior. The grain growth exponents for all five of the equiatomic alloys were found to be ∼0.25 (compared to ∼0.5 for unalloyed Ni), suggesting that solute drag may control grain growth in the alloys. For all five alloys, as well as for pure Ni, microhardness increases as the grain size decreases in a Hall-Petch type way. The ternary alloy NiCoCr was the hardest of the alloys investigated in this study, even when compared to the quaternary FeNiCoCr alloy. This suggests that solute hardening in equiatomic alloys depends not just on the number of alloying elements but also their type.

Original languageEnglish
Pages (from-to)131-140
Number of pages10
JournalIntermetallics
Volume46
DOIs
StatePublished - Mar 2014
Externally publishedYes

Keywords

  • B. Alloy design
  • B. Solid-solution hardening
  • C. Recrystallization and recovery
  • D. Microstructure
  • F. Diffraction

Fingerprint

Dive into the research topics of 'Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys'. Together they form a unique fingerprint.

Cite this