Abstract
The recent observation of spectacular photocatalytic activity enhancements generated tremendous interest in the synthesis, properties, and potential applications of black titania. Most black titania are core-shell structures consisting of a perfect crystalline core surrounded by a defective surface shell. Because the properties are attributed to the defective shell, it is particularly important, but very challenging, to obtain atomic structure information of the core, the shell, and the core-shell relationship on a single particle level. While the role of various synthesis approaches for producing black titania with different properties has been extensively reviewed, this review focuses on understanding the structure-functionality relationship in black titania on a single particle level. We start by introducing the crystal and electronic band structure of different TiO 2 phases, followed by the discussion of particle size effects, the origin of lattice distortions, and phase control by synthesis, and concluding with the discussion of crystalline order formation and evolution creating the defective shell.
Original language | English |
---|---|
Pages (from-to) | 1138-1153 |
Number of pages | 16 |
Journal | Journal of Materials Research |
Volume | 34 |
Issue number | 7 |
DOIs | |
State | Published - Apr 15 2019 |
Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences |
Keywords
- atomic structure
- black titania
- core-shell structure
- interstitial Ti
- lattice distortion
- nanoparticles
- oxygen vacancies
- phase
- size