Abstract
Ground source (geothermal) heat pumps (GSHPs) can meet the thermal demands of buildings in an energy-efficient manner. The current high installation costs and long payback period limit the attractiveness of GSHP installation in the United States. Vertical borehole ground heat exchangers (VBGHEs), which are commonly used in GSHP systems, contribute most to the cost premium of GSHPs. Reducing the cost of VBGHEs could help increase market penetration of GSHP systems. This paper reviews recent developments for VBGHEs, including improvements in borehole heat transfer and borehole field layout, integration with thermal energy storage, and new design tools. Improvements in the borehole design and materials are more likely to be justified when the ground has high thermal conductivity. Integrating thermal energy storage can provide additional value to the GSHP system, especially when flexible electric demand at buildings becomes more valuable. Advanced design tools for VBGHEs that account for the thermal response of irregularly shaped borehole fields and that are more closely integrated with whole-building energy simulation programs may facilitate more innovations and optimization of GSHP system designs.
Original language | English |
---|---|
Article number | 100905 |
Journal | Journal of Energy Resources Technology, Transactions of the ASME |
Volume | 143 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2021 |
Funding
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.1
Funders | Funder number |
---|---|
U.S. Department of Energy |
Keywords
- Energy storage systems
- Geothermal energy
- Heat energy generation/storage/ transfer