TY - JOUR
T1 - Realization of a two-dimensional Weyl semimetal and topological Fermi strings
AU - Lu, Qiangsheng
AU - Reddy, P. V.Sreenivasa
AU - Jeon, Hoyeon
AU - Mazza, Alessandro R.
AU - Brahlek, Matthew
AU - Wu, Weikang
AU - Yang, Shengyuan A.
AU - Cook, Jacob
AU - Conner, Clayton
AU - Zhang, Xiaoqian
AU - Chakraborty, Amarnath
AU - Yao, Yueh Ting
AU - Tien, Hung Ju
AU - Tseng, Chun Han
AU - Yang, Po Yuan
AU - Lien, Shang Wei
AU - Lin, Hsin
AU - Chiang, Tai Chang
AU - Vignale, Giovanni
AU - Li, An Ping
AU - Chang, Tay Rong
AU - Moore, Rob G.
AU - Bian, Guang
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - A two-dimensional (2D) Weyl semimetal, akin to a spinful variant of graphene, represents a topological matter characterized by Weyl fermion-like quasiparticles in low dimensions. The spinful linear band structure in two dimensions gives rise to distinctive topological properties, accompanied by the emergence of Fermi string edge states. We report the experimental realization of a 2D Weyl semimetal, bismuthene monolayer grown on SnS(Se) substrates. Using spin and angle-resolved photoemission and scanning tunneling spectroscopies, we directly observe spin-polarized Weyl cones, Weyl nodes, and Fermi strings, providing consistent evidence of their inherent topological characteristics. Our work opens the door for the experimental study of Weyl fermions in low-dimensional materials.
AB - A two-dimensional (2D) Weyl semimetal, akin to a spinful variant of graphene, represents a topological matter characterized by Weyl fermion-like quasiparticles in low dimensions. The spinful linear band structure in two dimensions gives rise to distinctive topological properties, accompanied by the emergence of Fermi string edge states. We report the experimental realization of a 2D Weyl semimetal, bismuthene monolayer grown on SnS(Se) substrates. Using spin and angle-resolved photoemission and scanning tunneling spectroscopies, we directly observe spin-polarized Weyl cones, Weyl nodes, and Fermi strings, providing consistent evidence of their inherent topological characteristics. Our work opens the door for the experimental study of Weyl fermions in low-dimensional materials.
UR - http://www.scopus.com/inward/record.url?scp=85198660906&partnerID=8YFLogxK
U2 - 10.1038/s41467-024-50329-6
DO - 10.1038/s41467-024-50329-6
M3 - Article
C2 - 39019865
AN - SCOPUS:85198660906
SN - 2041-1723
VL - 15
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 6001
ER -