Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging

Michael Conway, Tingting Xu, Andrew Kirkpatrick, Steven Ripp, Gary Sayler, Dan Close

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Background: Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous. Results: We report that artificial subdivision of the bacterial luciferin and luciferase pathway subcomponents enables continuous or inducible bioluminescence in pluripotent and mesenchymal stem cells when the luciferin pathway is overexpressed with a 20-30:1 ratio. Ratio-based expression is demonstrated to have minimal effects on phenotype or differentiation while enabling autonomous bioluminescence without requiring external excitation. We used this method to assay the proliferation, viability, and toxicology responses of iPSCs and showed that these assays are comparable in their performance to established colorimetric assays. Furthermore, we used the continuous luminescence to track stem cell progeny post-differentiation. Finally, we show that tissue-specific promoters can be used to report cell fate with this system. Conclusions: Our findings expand the utility of bacterial luciferase and provide a new tool for stem cell research by providing a method to easily enable continuous, non-invasive bioluminescent monitoring in pluripotent cells.

Original languageEnglish
Article number79
JournalBMC Biology
Volume18
Issue number1
DOIs
StatePublished - Jul 3 2020
Externally publishedYes

Funding

Funding for this research was provided by the National Institutes of Health (NIH) National Institute of General Medical Sciences under award number R42GM116622, the NIH National Institute of Environmental Health Sciences under award number R44ES026269, and the National Science Foundation (NSF) Major Research Instrumentation Program under award number 1530953. The content is solely the responsibilities of the authors and does not necessarily represent the official views of the NIH or the NSF.

Keywords

  • Autobioluminescence
  • Bacterial luciferase
  • Bioimaging
  • Luciferase
  • Luciferin
  • Lux
  • MSC
  • Stem cells
  • iPSC

Fingerprint

Dive into the research topics of 'Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging'. Together they form a unique fingerprint.

Cite this