Abstract
A VME-based real-time computer system for laser control, data acquisition, and analysis for the DIII-D multipulse Thomson scattering diagnostic is described. The laser control task requires precise timing of up to eight Nd:YAG lasers, each with an average firing rate of 20 Hz. A cpu module in a real-time multiprocessing computer system will operate the lasers with evenly staggered laser pulses or in a "burst mode," where all available (fully charged) lasers can be fired at 50-100 μs intervals upon receipt of an external event trigger signal. One or more cpu modules, along with a LeCroy FERA (fast encoding and readout ADC) system, will perform real-time data acquisition and analysis. Partial electron temperature and density profiles will be available for plasma feedback control within 1 ms following each laser pulse. The VME-based computer system consists of two or more target processor modules (25 MHz Motorola 68030) running the VMEexec real-time operating system connected to a Unix-based host system (also a 68030). All real-time software is fully interrupt driven to maximize system efficiency. Operator interaction and (non-real-time) data analysis takes place on a MicroVAX 3400 connected via DECnet.
Original language | English |
---|---|
Pages (from-to) | 3286-3288 |
Number of pages | 3 |
Journal | Review of Scientific Instruments |
Volume | 61 |
Issue number | 10 |
DOIs | |
State | Published - 1990 |
Externally published | Yes |