Real-time adaptive sparse-identification-based predictive control of nonlinear processes

Fahim Abdullah, Panagiotis D. Christofides

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This study introduces a sparse identification-based model predictive control (MPC) framework that incorporates on-line updates of the sparse-identified model to account for nonlinear dynamics and model uncertainty in process systems. The methodology involves obtaining a nonlinear first-order ordinary differential equation model using sparse identification for nonlinear dynamics (SINDy), which is integrated into two control schemes: Lyapunov-based MPC (LMPC) for achieving steady-state operation and Lyapunov-based economic MPC (LEMPC) for achieving both closed-loop stability and optimal economic performance. To improve prediction accuracy, an on-line model update scheme is proposed for the SINDy models. Specifically, an error-trigger mechanism that utilizes prediction errors and then uses the most recent process data to update the parameters of the SINDy model in real-time is designed. By incorporating the error-triggered on-line model updates in the SINDy-based LMPC and LEMPC, the dynamic performance of the process is enhanced, ensuring closed-loop stability, optimality, and smooth control actions. Following theoretical results on the boundedness of the closed-loop states and detailed discussions on the selection criteria for parameters of the error-triggered SINDy update scheme, the effectiveness of the proposed methodology is demonstrated through a chemical process example with time-varying disturbances under the LEMPC framework.

Original languageEnglish
Pages (from-to)750-769
Number of pages20
JournalChemical Engineering Research and Design
Volume196
DOIs
StatePublished - Aug 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Institution of Chemical Engineers

Keywords

  • Adaptive control
  • Model predictive control
  • Nonlinear processes
  • Sparse identification

Fingerprint

Dive into the research topics of 'Real-time adaptive sparse-identification-based predictive control of nonlinear processes'. Together they form a unique fingerprint.

Cite this